Intermediate Exam T5

Thermodynamics and Statistical Physics 2018-2019

Friday December 21, 2018
9:00-11:00

Read these instructions carefully before making the exam!

- Write your name and student number on every sheet.
- Make sure to write readable for other people than yourself. Points will NOT be given for answers in illegible writing.
- Language; your answers have to be in English.
- Use a separate sheet for each problem.
- Use of a (graphing) calculator is allowed.
- This exam consists of $\mathbf{3}$ problems.
- The weight of the problems is Problem 1 ($\mathrm{P} 1=30 \mathrm{pts}$); Problem 2 ($\mathbf{P} 2=30 \mathrm{pts}$); Problem 3 (P3=30 pts). Weights of the various subproblems are indicated at the beginning of each problem.
- The grade of the exam is calculated as $(\mathbf{P} 1+\mathrm{P} 2+\mathrm{P} 3+10) / 10$.
- For all problems you have to write down your arguments and the intermediate steps in your calculation, else the answer will be considered as incomplete and points will be deducted.

| PROBLEM 1 |
| :--- | :--- |
| Name S-number |

PROBLEM 1

Score: $a+b+c+d+e+f=5+5+5+5+5+5=30$
A system with two distinguishable absorption sites is in equilibrium with a large heat reservoir with temperature T and a particle reservoir with chemical potential μ. If 0,1 , or 2 particles are absorbed to the system, the energy of the system is $0,-\varepsilon$ and -2ε, respectively (see figure).

$$
E=0
$$

$$
E=-\varepsilon
$$

$E=-\varepsilon$

$E=-2 \varepsilon$
a) Show that the grand partition function z for this system is given by,

$$
z=(1+x)^{2} \text { with } x=e^{\beta(\mu+\varepsilon)}
$$

b) Give expressions for the probabilities $P(0) ; P(-\varepsilon)$ and $P(-2 \varepsilon)$ that the system has an energy of $0,-\varepsilon$ and -2ε, respectively. Express your answers in terms of x.
c) In case $\mu+\epsilon>0$, calculate the probabilities from b) in the limits $T \rightarrow 0$ and $T \rightarrow$ ∞.
d) Calculate the mean number $\langle N\rangle$ of particles absorbed to the system. Express your answer in terms of x.

Suppose we add particles of a second type to the particle reservoir. The chemical potential of this type of particles is also μ. However, this second particle type binds twice as strong (thus with binding energy -2ε) to the absorption sites of the system as the original (first) particle type.
e) Give an expression of the grand partition function z for this new situation. Express your answer in terms of x and $y=e^{\beta(\mu+2 \varepsilon)}$.
f) Calculate the ratio R of the probability that both adsorption sites are occupied by a particle of the first type and the probability that both sites are occupied by a particle of the second type. Explain what happens with this ratio in case $T \rightarrow 0$.

$$
R=\frac{P_{\text {first }}(2 \text { sites occupied })}{P_{\text {second }}(2 \text { sites occupied })}
$$

PROBLEM 2

Score: $a+b+c+d+e=7+7+7+3+6=30$
A gas of photons is confined to a cavity with volume V. The cavity is kept at a constant temperature T.

HINT 1: The density of states for a spinless particle confined to an enclosure with volume V is (expressed as a function of the particle's momentum p):

$$
g(p) d p=\frac{V}{h^{3}} 4 \pi p^{2} d p
$$

HINT 2: The mean number of photons in a state with energy $\varepsilon=\hbar \omega$ is equal to: $\frac{1}{e^{\beta \varepsilon}-1}$
a) Show that density of states of a photon in the cavity can be written as,

$$
g(\omega) d \omega=\frac{V \omega^{2} d \omega}{\pi^{2} c^{3}}
$$

b) Show that the mean number of photons in the cavity is given by,

$$
N=b \frac{V k^{3} T^{3}}{\pi^{2} \hbar^{3} c^{3}}
$$

where $b=2.404$ is a dimensionless constant.
c) Show that the total energy density $u=\frac{U}{V}\left(\mathrm{~J} \mathrm{~m}^{-3}\right)$ in the cavity is related to the temperature T by,

$$
u=a T^{4} \text { with } a=\frac{\pi^{2} k^{4}}{15 \hbar^{3} c^{3}}
$$

d) Use the first law of thermodynamics and the definition of Helmholtz free energy to derive the expression: $d F=-S d T-P d V$.

The Helmholtz free energy F of the photon gas is $F=-\frac{1}{3} a V T^{4}$, with a the constant defined in c)
e) Calculate the entropy S directly from the Helmholtz free energy and show that for the photon gas:

$$
U=F+T S
$$

PROBLEM 3

Score: $a+b+c+d+e=3+7+7+6+7=30$

Consider an ultrarelativistic atom with mass M confined to (one dimensional) movement along the x-axis between $x=0$ and $x=L$. The atom is in equilibrium with a heat bath at temperature T.
a) Show that for an ultrarelativistic atom the energy E and momentum p are related by $E=p c$ with c, the velocity of light.
b) Show that for this atom the number of states in which the atom has a momentum with a magnitude between p between p and $p+d p$ is given by:

$$
g(p) d p=\frac{2 L}{h} d p
$$

c) Show that the single atom partition function is given by,

$$
Z_{1}=\frac{L}{\pi}\left(\frac{k T}{\hbar c}\right)
$$

d) Suppose we have a classical ideal gas in 1 dimension of N of these ultrarelativistic atoms. Calculate the internal energy U of this 1 -dimensional gas.
e) Derive the equation of state of this 1-dimensional gas. (Use the expression of the Helmholtz free energy and the first law of thermodynamics in one dimension $(d U=$ $T d S-p d L$). With p the 1D pressure (tension) of the gas.

Solutions

PROBLEM 1

a)

$$
\begin{gathered}
z=\sum_{N=0}^{\infty} \sum_{r} e^{\beta\left(\mu N-E_{r}(N)\right)}=e^{\beta(\mu \times 0-0)}+e^{\beta(\mu \times 1+\varepsilon)}+e^{\beta(\mu \times 1+\varepsilon)}+e^{\beta(\mu \times 2+2 \varepsilon)} \\
=1+2 e^{\beta(\mu+\varepsilon)}+e^{2 \beta(\mu+\varepsilon)}=1+2 x+x^{2}=(1+x)^{2}
\end{gathered}
$$

b)

$$
\begin{gathered}
P(0)=\frac{e^{\beta(\mu \times 0-0)}}{z}=\frac{1}{z}=\frac{1}{(1+x)^{2}} \\
P(-\varepsilon)=\frac{e^{\beta(\mu \times 1+\varepsilon)}+e^{\beta(\mu \times 1+\varepsilon)}}{z}=\frac{2 x}{(1+x)^{2}} \\
P(-2 \varepsilon)=\frac{e^{\beta(\mu \times 2+2 \varepsilon)}}{z}=\frac{x^{2}}{(1+x)^{2}}
\end{gathered}
$$

c)

In the limit $T \rightarrow 0$ we have $x=e^{\beta(\mu+\varepsilon)} \rightarrow \infty$; because $\mu+\varepsilon>0$.
Thus,

$$
\begin{gathered}
P(0)=\frac{1}{(1+x)^{2}} \rightarrow 0 \\
P(-\varepsilon)=\frac{2 x}{(1+x)^{2}}=\frac{2 x}{1+2 x+x^{2}}=\frac{2}{\frac{1}{x}+2+x} \rightarrow 0 \\
P(-2 \varepsilon)=\frac{x^{2}}{(1+x)^{2}}=\frac{x^{2}}{1+2 x+x^{2}}=\frac{1}{\frac{1}{x^{2}}+\frac{2}{x}+1} \rightarrow 1
\end{gathered}
$$

At low temperature both adsorption sites are occupied (situation with the lowest energy).

In the limit $T \rightarrow \infty$ we have $x=e^{\beta(\mu+\varepsilon)} \rightarrow 1$.
Thus,

$$
\begin{gathered}
P(0)=\frac{1}{(1+x)^{2}} \rightarrow \frac{1}{4} \\
P(-\varepsilon)=\frac{2 x}{(1+x)^{2}} \rightarrow \frac{2}{4} \\
P(-2 \varepsilon)=\frac{x^{2}}{(1+x)^{2}} \rightarrow \frac{1}{4}
\end{gathered}
$$

At high energies all the four situations as pictured in the figure are equally probable.
d)

There are two ways to do this,

Using either $\langle N\rangle=\sum_{\text {all states }} P_{i} N_{i}$ or $\langle N\rangle=\frac{1}{\beta}\left(\frac{\partial \ln Z}{\partial \mu}\right)_{\beta}$
In the first approach we use the probabilities for 0,1 or 2 particle absorbed:

$$
\begin{gathered}
P(N=0)=\frac{1}{(1+x)^{2}} \\
P(N=1)=\frac{2 x}{(1+x)^{2}} \\
P(N=2)=\frac{x^{2}}{(1+x)^{2}} \\
\langle N\rangle=P(N=0) \times 0+P(N=1) \times 1+P(N=2) \times 2=\frac{2 x}{(1+x)^{2}}+\frac{2 x^{2}}{(1+x)^{2}} \Rightarrow \\
\langle N\rangle=\frac{2 x(1+x)}{(1+x)^{2}}=\frac{2 x}{1+x}
\end{gathered}
$$

Using the other expression gives,

$$
\begin{gathered}
\langle N\rangle=\frac{1}{\beta}\left(\frac{\partial \ln z}{\partial \mu}\right)_{\beta}=\frac{1}{\beta}\left(\frac{\left.\partial \ln \left[(1+x)^{2}\right)\right]}{\partial \mu}\right)_{\beta}=\frac{1}{\beta} \frac{2}{1+x}\left(\frac{\partial x}{\partial \mu}\right)_{\beta}=\frac{1}{\beta} \frac{2}{1+x}\left(\frac{\partial e^{\beta(\mu+\varepsilon)}}{\partial \mu}\right)_{\beta} \\
=\frac{1}{\beta} \frac{2}{1+x} \beta e^{\beta(\mu+\varepsilon)}=\frac{2 x}{1+x}
\end{gathered}
$$

e)

The grand partition function in this situation becomes:

$$
\begin{gathered}
z=\sum_{N=0}^{\infty} \sum_{r} e^{\beta\left(\mu N-E_{r}(N)\right)}=e^{\beta(\mu \times 0-0)}+e^{\beta(\mu \times 1+\varepsilon)}+e^{\beta(\mu \times 1+\varepsilon)}+e^{\beta(\mu \times 2+2 \varepsilon)} \\
+e^{\beta(\mu \times 1+2 \varepsilon)}+e^{\beta(\mu \times 1+2 \varepsilon)}+e^{\beta(\mu \times 2+4 \varepsilon)}+e^{\beta(\mu \times 2+3 \varepsilon)}+e^{\beta(\mu \times 2+3 \varepsilon)} \\
=1+2 e^{\beta(\mu+\varepsilon)}+e^{2 \beta(\mu+\varepsilon)}+2 e^{\beta(\mu+2 \varepsilon)}+e^{2 \beta(\mu+2 \varepsilon)}+2 e^{\beta(2 \mu+3 \varepsilon)} \\
=1+2 x+x^{2}+2 y+y^{2}+2 x y=(1+x+y)^{2}
\end{gathered}
$$

f)

We have

$$
P_{\text {first }}(2 \text { sites occupied })=\frac{e^{2 \beta(\mu+\varepsilon)}}{z}
$$

And

$$
\begin{gathered}
P_{\text {second }}(2 \text { sites occupied })=\frac{e^{2 \beta(\mu+2 \varepsilon)}}{z} \\
R=\frac{e^{2 \beta(\mu+\varepsilon)}}{e^{2 \beta(\mu+2 \varepsilon)}}=e^{-2 \beta \varepsilon}
\end{gathered}
$$

In case $T \rightarrow 0$ then $\beta \rightarrow \infty$ and thus $R \rightarrow 0$; all sites are occupied by the stronger binding particle.

PROBLEM 2

a)

For photons the momentum p is related to energy $\varepsilon=\hbar \omega=p c$. Using this in HINT 1 in combination with the fact that the photon has two polarization states (extra factor of two in the density of states) leads to,

$$
g(\omega) d \omega=2 \frac{V}{h^{3}} 4 \pi\left(\frac{\hbar \omega}{c}\right)^{2} d\left(\frac{\hbar \omega}{c}\right)=\frac{V}{\pi^{2} \hbar^{3}}\left(\frac{\hbar}{c}\right)^{3} \omega^{2} d \omega=\frac{V \omega^{2} d \omega}{\pi^{2} c^{3}}
$$

b)

Using the density of states in a) and the mean number of photons in each state $n(\omega)$ (from HINT 2) we find,

$$
N=\int_{0}^{\infty} n(\omega) g(\omega) d \omega=\int_{0}^{\infty} \frac{1}{e^{\beta \hbar \omega}-1} \frac{V \omega^{2} d \omega}{\pi^{2} c^{3}}
$$

With the substitution $x=\beta \hbar \omega$ this leads to,

$$
N=\frac{V}{\pi^{2} c^{3}} \frac{1}{(\beta \hbar)^{3}} \int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1}=2.404 \frac{V k^{3} T^{3}}{\pi^{2} \hbar^{3} c^{3}}
$$

with the value of the integral from the table of integrals.
c)

The total energy U in the cavity is,

$$
U=\int_{0}^{\infty} \hbar \omega n(\omega) g(\omega) d \omega=\int_{0}^{\infty} \frac{\hbar \omega}{e^{\beta \hbar \omega}-1} \frac{V \omega^{2} d \omega}{\pi^{2} c^{3}}
$$

Again using the substitution $x=\beta \hbar \omega$ this leads to,

$$
\begin{gathered}
U=\frac{\hbar V}{\pi^{2} c^{3}} \frac{1}{(\beta \hbar)^{3}} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}
\end{gathered}=\frac{V k^{4} T^{4}}{\pi^{2} \hbar^{2} c^{3}} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{V k^{4} T^{4}}{\pi^{2} \hbar^{2} c^{3}} \times \frac{\pi^{2}}{15}=\frac{V \pi^{2} k^{4}}{15 \hbar^{3} c^{3}} T^{4} \Rightarrow . ~\left(u=\frac{U}{V}=\frac{\pi^{2} k^{4}}{15 \hbar^{3} c^{3}} T^{4}=a T^{4} .\right.
$$

The value of the integral was taken from the table of integrals.
d)

From $F=U-T S$ we have

$$
d F=d U-T d S-S d T=T d S-P d V-T d S-S d T=-P d V-S d T
$$

e)

From d) and the given expression for F we find,

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V}=-\left(\frac{\partial\left(-\frac{1}{3} a V T^{4}\right)}{\partial T}\right)_{V}=\frac{4}{3} a V T^{3}
$$

And,

$$
F=-\frac{1}{3} a V T^{4}=a V T^{4}-T \frac{4}{3} a V T^{3}=U-T S
$$

Check.

PROBLEM 3

a)

For an ultrarelativistic atom the rest mass energy is much smaller than the energy term related to the momentum of the particle thus,

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4} \approx(p c)^{2} \Rightarrow E=p c
$$

b)

From the solution of the 1D-wave equation: $\varphi=A \sin k_{x} x$ and taking this function to vanish at $x=0$ and at $x=L$ results in,
$k_{x}=\frac{n_{x} \pi}{L}$ with n_{x} a non-zero positive integers.
The total number of states $\Phi(k)$ with $|\vec{k}|<k$ is then given by the length k (only positive integers) divided by the unit distance between two states in k-space.

$$
\Phi(k)=\frac{k}{\left(\frac{\pi}{L}\right)}=\frac{L}{\pi} k
$$

The number of states between $k+d k$ and k is:

$$
g(k) d k=\Phi(k+d k)-\Phi(k)=\frac{\partial \Phi}{\partial k} d k=\frac{L}{\pi} d k
$$

Converting to momentum $p=\hbar k=\frac{h}{2 \pi} k$ we find,

$$
g(p) d p=\frac{2 L}{h} d p
$$

c)

Single atom partition function:

$$
\begin{gathered}
Z_{1}=\int_{0}^{\infty} g(p) e^{-\beta p c} d p=\int_{0}^{\infty} \frac{2 L}{h} e^{-\beta p c} d p=\frac{2 L}{h} \int_{0}^{\infty} e^{-\beta p c} d p=\left(\frac{2 L}{h}\right)\left(\frac{1}{\beta c}\right) \int_{0}^{\infty} e^{-z} d z \\
=\left.\left(\frac{2 L}{h}\right)\left(\frac{1}{\beta c}\right)\left(-e^{-z}\right)\right|_{0} ^{\infty}=\left(\frac{2 L}{h}\right)\left(\frac{1}{\beta c}\right)=\left(\frac{L}{\pi}\right)\left(\frac{k T}{\hbar c}\right)
\end{gathered}
$$

d)

The partition function of the classical ideal gas of N atoms is:

$$
Z_{N}=\frac{1}{N!}\left(Z_{1}\right)^{N}=\frac{1}{N!}\left(\left(\frac{L}{\pi}\right)\left(\frac{k T}{\hbar c}\right)\right)^{N}=\frac{1}{N!}\left(\frac{L}{\beta \pi \hbar c}\right)^{N}
$$

The internal energy of the gas is:

$$
U=-\frac{\partial \ln Z}{\partial \beta}=-\frac{\partial}{\partial \beta}\left[N \ln \left(\frac{L}{\beta \pi \hbar c}\right)-\ln (N!)\right]=N \frac{\partial}{\partial \beta}[\ln (\beta)]=\frac{N}{\beta}=N k T
$$

e)

From $F=U-T S \Rightarrow d F=d U-T d S-S d T$ and the first law for the 1-dimensional gas $d U=T d S-p d L$) we find:

$$
d F=-S d T-p d L
$$

And thus,

$$
p=-\left(\frac{\partial F}{\partial L}\right)_{T}
$$

Using,

$$
F=-\frac{\ln Z}{\beta}
$$

We find:

$$
p=\frac{1}{\beta} \frac{\partial \ln Z}{\partial L}=\frac{1}{\beta} \frac{\partial}{\partial L}\left(N \ln \left(\frac{L}{\beta \pi \hbar c}\right)-\ln (N!)\right)=\frac{N}{\beta L}=\frac{N k T}{L}
$$

