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Statistical Physics  
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Read these instructions carefully before making the exam! 

 

• Write your name and student number on every sheet. 

• Make sure to write readable for other people than yourself. Points 

will NOT be given for answers in illegible writing. 

• Language; your answers have to be in English. 

• Use a separate sheet for each problem. 

• Use of a (graphing) calculator is allowed. 

• This exam consists of 3 problems.  

• The weight of the problems is Problem 1 (P1=30 pts); Problem 2 

(P2=30 pts); Problem 3 (P3=30 pts). Weights of the various 

subproblems are indicated at the beginning of each problem.  

• The grade of the exam is calculated as (P1+P2+P3 +10)/10. 

• For all problems you have to write down your arguments and the 

intermediate steps in your calculation, else the answer will be 

considered as incomplete and points will be deducted. 

  
PROBLEM 1
Name   S-number

PROBLEM 2
Name   S-number

PROBLEM 3
Name   S-number



  



 

PROBLEM 1 

Score: a+b+c+d+e+f=5+5+5+5+5+5=30 

 

A system with two distinguishable absorption sites is in equilibrium with a large heat 

reservoir with temperature 𝑇 and a particle reservoir with chemical potential 𝜇. If 0, 1, 

or 2 particles are absorbed to the system, the energy of the system is 0, -𝜀 and −2𝜀, 

respectively (see figure). 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Show that the grand partition function 𝓏 for this system is given by, 

 

𝓏 =  (1 + 𝑥)2  with 𝑥 = 𝑒𝛽(𝜇+𝜀) 

 

b) Give expressions for the probabilities 𝑃(0);  𝑃(−𝜀) and 𝑃(−2𝜀) that the system 

has an energy of  0, −𝜀 and  −2𝜀,  respectively. Express your answers in terms of 

𝑥.  

c) In case 𝜇 + 𝜖 > 0, calculate the probabilities from b) in the limits 𝑇 → 0 and 𝑇 →
∞. 

d) Calculate the mean number 〈𝑁〉 of particles absorbed to the system. Express your 

answer in terms of 𝑥. 

 

Suppose we add particles of a second type to the particle reservoir.  The chemical 

potential of this type of particles is also 𝜇. However, this second particle type binds 

twice as strong (thus with binding energy −2𝜀) to the absorption sites of the system as 

the original (first) particle type.  

 

e) Give an expression of the grand partition function 𝓏 for this new situation. Express 

your answer in terms of 𝑥 and 𝑦 = 𝑒𝛽(𝜇+2𝜀). 

f) Calculate the ratio 𝑅 of the probability that both adsorption sites are occupied by a 

particle of the first type and the probability that both sites are occupied by a particle 

of the second type. Explain what happens with this ratio in case 𝑇 → 0. 

  

𝑅 =
𝑃first(2 sites occupied)

𝑃second(2 sites occupied)
 

  



PROBLEM 2 

Score: a+b+c+d+e =7+7+7+3+6=30 

 

A gas of photons is confined to a cavity with volume 𝑉. The cavity is kept at a constant 

temperature 𝑇.  

 

HINT 1: The density of states for a spinless particle confined to an enclosure with 

volume 𝑉 is (expressed as a function of the particle’s momentum p): 

 

𝑔(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 

 

HINT 2: The mean number of photons in a state with energy 𝜀 = ℏ𝜔 is equal to: 
1

𝑒𝛽𝜀−1
 

 

a) Show that density of states of a photon in the cavity can be written as, 

 

𝑔(𝜔)𝑑𝜔 =
𝑉𝜔2𝑑𝜔

𝜋2𝑐3
 

 

b) Show that the mean number of photons in the cavity is given by, 

 

𝑁 = 𝑏 
𝑉𝑘3𝑇3

𝜋2ℏ3𝑐3
 

 

where 𝑏 = 2.404 is a dimensionless constant. 

 

c) Show that the total energy density 𝑢 =
𝑈

𝑉
 (J m-3) in the cavity is related to the 

temperature T by, 

𝑢 = 𝑎𝑇4 with 𝑎 =
𝜋2𝑘4

15ℏ3𝑐3
 

 

d) Use the first law of thermodynamics and the definition of Helmholtz free energy to 

derive the expression: 𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉. 

 

The Helmholtz free energy 𝐹 of the photon gas is 𝐹 = −
1

3
𝑎𝑉𝑇4, with 𝑎 the constant 

defined in c)  

 

e) Calculate the entropy 𝑆 directly from the Helmholtz free energy and show that for 

the photon gas: 

𝑈 = 𝐹 + 𝑇𝑆 

 

  



PROBLEM 3 

Score: a+b+c+d+e =3+7+7+6+7=30 

 

Consider an ultrarelativistic atom with mass 𝑀 confined to (one dimensional) 

movement along the 𝑥-axis between 𝑥 = 0 and 𝑥 = 𝐿. The atom is in equilibrium with 

a heat bath at temperature 𝑇.  

 

a) Show that for an ultrarelativistic atom the energy 𝐸 and momentum 𝑝 are related by 

𝐸 = 𝑝𝑐 with 𝑐, the velocity of light. 

b) Show that for this atom the number of states in which the atom has a momentum 

with a magnitude between 𝑝 between 𝑝 and 𝑝 + 𝑑𝑝 is given by: 

 

𝑔(𝑝)𝑑𝑝 =
2𝐿

ℎ
𝑑𝑝 

 

c) Show that the single atom partition function is given by, 

  

𝑍1 =
𝐿

𝜋
(
𝑘𝑇

ℏ𝑐
) 

 

d) Suppose we have a classical ideal gas in 1 dimension of 𝑁 of these ultrarelativistic 

atoms. Calculate the internal energy 𝑈 of this 1-dimensional gas. 

e) Derive the equation of state of this 1-dimensional gas. (Use the expression of the 

Helmholtz free energy and the first law of thermodynamics in one dimension (𝑑𝑈 =

𝑇𝑑𝑆 − 𝑝𝑑𝐿). With 𝑝 the 1D pressure (tension) of the gas.  

 

  



Solutions 

PROBLEM 1 

a) 

𝓏 = ∑ ∑𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁)) =

𝑟

∞

𝑁=0

𝑒𝛽(𝜇×0−0) + 𝑒𝛽(𝜇×1+𝜀) + 𝑒𝛽(𝜇×1+𝜀) + 𝑒𝛽(𝜇×2+2𝜀)

= 1 + 2𝑒𝛽(𝜇+𝜀) + 𝑒2𝛽(𝜇+𝜀) = 1 + 2𝑥 + 𝑥2 = (1 + 𝑥)2 

 

b)  

 

𝑃(0) =
𝑒𝛽(𝜇×0−0)

𝓏
=

1

𝓏
=

1

(1 + 𝑥)2
 

 

 

𝑃(−𝜀) =
𝑒𝛽(𝜇×1+𝜀) + 𝑒𝛽(𝜇×1+𝜀)

𝓏
=

2𝑥

(1 + 𝑥)2
 

 

 

𝑃(−2𝜀) =
𝑒𝛽(𝜇×2+2𝜀)

𝓏
=

𝑥2

(1 + 𝑥)2
 

 

c) 

In the limit 𝑇 → 0 we have 𝑥 = 𝑒𝛽(𝜇+𝜀) → ∞;  because 𝜇 + 𝜀 > 0. 

Thus, 

 

𝑃(0) =
1

(1 + 𝑥)2
→ 0 

 

𝑃(−𝜀) =
2𝑥

(1 + 𝑥)2
=

2𝑥

1 + 2𝑥 + 𝑥2
=

2

1
𝑥 + 2 + 𝑥

→ 0 

 

 

𝑃(−2𝜀) =
𝑥2

(1 + 𝑥)2
=

𝑥2

1 + 2𝑥 + 𝑥2
=

1

1
𝑥2 +

2
𝑥 + 1

→ 1 

 

At low temperature both adsorption sites are occupied (situation with the lowest 

energy). 

 

In the limit 𝑇 → ∞ we have 𝑥 = 𝑒𝛽(𝜇+𝜀) → 1. 

Thus, 

 



𝑃(0) =
1

(1 + 𝑥)2
→

1

4
 

 

𝑃(−𝜀) =
2𝑥

(1 + 𝑥)2
→

2

4
 

 

𝑃(−2𝜀) =
𝑥2

(1 + 𝑥)2
→

1

4
 

 

At high energies all the four situations as pictured in the figure are equally probable. 

 

d) 

There are two ways to do this, 

 

Using either 〈𝑁〉 = ∑ 𝑃𝑖𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝑁𝑖 or 〈𝑁〉 =
1

𝛽
(
𝜕 ln𝒵

𝜕𝜇
)
𝛽

 

In the first approach we use the probabilities for 0, 1 or 2 particle absorbed: 

 

 

𝑃(𝑁 = 0) =
1

(1 + 𝑥)2
 

 

𝑃(𝑁 = 1) =
2𝑥

(1 + 𝑥)2
 

 

𝑃(𝑁 = 2) =
𝑥2

(1 + 𝑥)2
 

 

〈𝑁〉 = 𝑃(𝑁 = 0) × 0 + 𝑃(𝑁 = 1) × 1 + 𝑃(𝑁 = 2) × 2 =
2𝑥

(1 + 𝑥)2
+

2𝑥2

(1 + 𝑥)2
⇒ 

 

〈𝑁〉 =
2𝑥(1 + 𝑥)

(1 + 𝑥)2
=

2𝑥

1 + 𝑥
 

 

Using the other expression gives, 

〈𝑁〉 =
1

𝛽
(
𝜕ln𝓏 

𝜕𝜇
)
𝛽

=
1

𝛽
(
𝜕 ln[(1 + 𝑥)2)]

𝜕𝜇
)

𝛽

=
1

𝛽

2

1 + 𝑥
(
𝜕𝑥

𝜕𝜇
)
𝛽

=
1

𝛽

2

1 + 𝑥
(
𝜕𝑒𝛽(𝜇+𝜀)

𝜕𝜇
)

𝛽

=
1

𝛽

2

1 + 𝑥
𝛽𝑒𝛽(𝜇+𝜀) =

2𝑥

1 + 𝑥
 

e) 

The grand partition function in this situation becomes: 

 



𝓏 = ∑ ∑𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁)) =

𝑟

∞

𝑁=0

𝑒𝛽(𝜇×0−0) + 𝑒𝛽(𝜇×1+𝜀) + 𝑒𝛽(𝜇×1+𝜀) + 𝑒𝛽(𝜇×2+2𝜀)

+ 𝑒𝛽(𝜇×1+2𝜀) + 𝑒𝛽(𝜇×1+2𝜀) + 𝑒𝛽(𝜇×2+4𝜀) + 𝑒𝛽(𝜇×2+3𝜀) + 𝑒𝛽(𝜇×2+3𝜀)

= 1 + 2𝑒𝛽(𝜇+𝜀) + 𝑒2𝛽(𝜇+𝜀) + 2𝑒𝛽(𝜇+2𝜀) + 𝑒2𝛽(𝜇+2𝜀) + 2𝑒𝛽(2𝜇+3𝜀)

= 1 + 2𝑥 + 𝑥2 + 2𝑦 + 𝑦2 + 2𝑥𝑦 = (1 + 𝑥 + 𝑦)2 

 

f) 

We have  

 

𝑃first(2 sites occupied) =
𝑒2𝛽(𝜇+𝜀)

𝓏
 

 

And  

𝑃second(2 sites occupied) =
𝑒2𝛽(𝜇+2𝜀)

𝓏
 

 

𝑅 =
𝑒2𝛽(𝜇+𝜀)

𝑒2𝛽(𝜇+2𝜀)
= 𝑒−2𝛽𝜀 

 

In case 𝑇 → 0 then 𝛽 → ∞ and thus 𝑅 → 0; all sites are occupied by the stronger 

binding particle. 

 

  



PROBLEM 2 

 

a) 

For photons the momentum 𝑝 is related to energy 𝜀 = ℏ𝜔 = 𝑝𝑐. Using this in HINT 1 

in combination with the fact that the photon has two polarization states (extra factor of 

two in the density of states) leads to, 

 

𝑔(𝜔)𝑑𝜔 = 2
𝑉

ℎ3
4𝜋 (

ℏ𝜔

𝑐
)
2

𝑑 (
ℏ𝜔

𝑐
) =

𝑉

𝜋2ℏ3
(
ℏ

𝑐
)
3

𝜔2𝑑𝜔 =
𝑉𝜔2𝑑𝜔

𝜋2𝑐3
 

b) 

Using the density of states in a) and the mean number of photons in each state 𝑛(𝜔) 

(from HINT 2) we find, 

 

 

𝑁 = ∫ 𝑛(𝜔)𝑔(𝜔)𝑑𝜔

∞

0

= ∫
1

𝑒𝛽ℏ𝜔 − 1

𝑉𝜔2𝑑𝜔

𝜋2𝑐3

∞

0

 

 

With the substitution 𝑥 = 𝛽ℏ𝜔 this leads to, 

 

𝑁 =
𝑉

𝜋2𝑐3

1

(𝛽ℏ)3
∫

𝑥2𝑑𝑥

𝑒𝑥 − 1

∞

0

= 2.404
𝑉𝑘3𝑇3

𝜋2ℏ3𝑐3
 

 

with the value of the integral from the table of integrals. 

 

c) 

The total energy 𝑈 in the cavity is, 

 

𝑈 = ∫ ℏ𝜔 𝑛(𝜔)𝑔(𝜔)𝑑𝜔

∞

0

= ∫
ℏ𝜔

𝑒𝛽ℏ𝜔 − 1

𝑉𝜔2𝑑𝜔

𝜋2𝑐3

∞

0

 

 

Again using the substitution 𝑥 = 𝛽ℏ𝜔 this leads to, 

 

 

𝑈 =
ℏ𝑉

𝜋2𝑐3

1

(𝛽ℏ)3
∫

𝑥3𝑑𝑥

𝑒𝑥 − 1

∞

0

=
𝑉𝑘4𝑇4

𝜋2ℏ2𝑐3
∫

𝑥3𝑑𝑥

𝑒𝑥 − 1

∞

0

=
𝑉𝑘4𝑇4

𝜋2ℏ2𝑐3
×

𝜋2

15
=

𝑉𝜋2𝑘4

15ℏ3𝑐3
𝑇4 ⇒ 

 

𝑢 =
𝑈

𝑉
=

𝜋2𝑘4

15ℏ3𝑐3
𝑇4 = 𝑎𝑇4 

 

The value of the integral was taken from the table of integrals. 

 

 

d) 

 

From 𝐹 = 𝑈 − 𝑇𝑆 we have 



 

 𝑑𝐹 = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 = −𝑃𝑑𝑉 − 𝑆𝑑𝑇 

 

e) 

From d)  and the given expression for 𝐹 we find, 

 

𝑆 = −(
𝜕𝐹

𝜕𝑇
)
𝑉

= −(
𝜕 (−

1
3𝑎𝑉𝑇4)

𝜕𝑇
)

𝑉

=
4

3
𝑎𝑉𝑇3 

And,  

𝐹 = −
1

3
𝑎𝑉𝑇4 = 𝑎𝑉𝑇4 − 𝑇

4

3
𝑎𝑉𝑇3 = 𝑈 − 𝑇𝑆 

 

Check.  



 

PROBLEM 3 

 

a)  

For an ultrarelativistic atom the rest mass energy is much smaller than the energy term 

related to the momentum of the particle thus, 

 

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 ≈ (𝑝𝑐)2 ⇒ 𝐸 = 𝑝𝑐 

b) 

From the solution of the 1D-wave equation: 𝜑 = 𝐴 sin 𝑘𝑥𝑥 and taking this function to 

vanish at 𝑥 = 0 and at 𝑥 = 𝐿 results in, 

 

𝑘𝑥 =
𝑛𝑥𝜋

𝐿
   with 𝑛𝑥 a non-zero positive integers. 

 

The total number of states Φ(𝑘) with |�⃗� | < 𝑘 is then given by the length 𝑘 (only 

positive integers) divided by the unit distance between two states in 𝑘-space. 

 

Φ(𝑘) =
𝑘

(
𝜋
𝐿)

=
𝐿

𝜋
𝑘 

 

The number of states between 𝑘 + 𝑑𝑘 and 𝑘 is: 

 

𝑔(𝑘)𝑑𝑘 =  Φ(𝑘 + 𝑑𝑘) − Φ(𝑘) =
𝜕Φ

𝜕𝑘
𝑑𝑘 =

𝐿

𝜋
𝑑𝑘 

 

Converting to momentum 𝑝 = ℏ𝑘 =
ℎ

2𝜋
𝑘 we find, 

 

𝑔(𝑝)𝑑𝑝 =
2𝐿

ℎ
𝑑𝑝 

c) 

Single atom partition function: 

 

𝑍1 = ∫ 𝑔(𝑝)𝑒−𝛽𝑝𝑐𝑑𝑝 =

∞

0

∫
2𝐿

ℎ
𝑒−𝛽𝑝𝑐

∞

0

𝑑𝑝 =
2𝐿

ℎ
∫ 𝑒−𝛽𝑝𝑐

∞

0

𝑑𝑝 = (
2𝐿

ℎ
) (

1

𝛽𝑐
)∫ 𝑒−𝑧

∞

0

𝑑𝑧

= (
2𝐿

ℎ
) (

1

𝛽𝑐
) (−𝑒−𝑧)|0

∞ = (
2𝐿

ℎ
) (

1

𝛽𝑐
) = (

𝐿

𝜋
) (

𝑘𝑇

ℏ𝑐
) 

d) 

 

The partition function of the classical ideal gas of 𝑁 atoms is:  

 



𝑍𝑁 =
1

𝑁!
(𝑍1)

𝑁 =
1

𝑁!
((

𝐿

𝜋
) (

𝑘𝑇

ℏ𝑐
))

𝑁

=
1

𝑁!
(

𝐿

𝛽𝜋ℏ𝑐
)
𝑁

 

 

The internal energy of the gas is: 

 

𝑈 = −
𝜕 ln 𝑍

𝜕𝛽
= −

𝜕

𝜕𝛽
[𝑁 ln (

𝐿

𝛽𝜋ℏ𝑐
) − ln(𝑁!)] = 𝑁

𝜕

𝜕𝛽
[ln(𝛽)] =

𝑁

𝛽
= 𝑁𝑘𝑇 

 

e) 

From 𝐹 = 𝑈 − 𝑇𝑆 ⇒ 𝑑𝐹 = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 and the first law for the 1-dimensional 

gas 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝐿) we find: 

 

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑝𝑑𝐿 

 

And thus, 

𝑝 = −(
𝜕𝐹

𝜕𝐿
)
𝑇

 

Using, 

 

𝐹 = −
ln 𝑍

𝛽
 

We find: 

 

 

𝑝 =
1

𝛽

𝜕 ln 𝑍

𝜕𝐿
=

1

𝛽

𝜕

𝜕𝐿
(𝑁 ln (

𝐿

𝛽𝜋ℏ𝑐
) − ln(𝑁!)) =

𝑁

𝛽𝐿
=

𝑁𝑘𝑇

𝐿
 

 

 


